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Recent development in quantum computation and quantum information theory allows to
extend the scope of game theory for the quantum world. The paper presents the history,
basic ideas, and recent development in quantum game theory. In this context, a new
application of the Ising chain model is proposed.
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Motto
The man was very appreciative but curious. He asked the farmer why he called
his horse by the wrong name three times.
The farmer said, “Oh, my horse is blind, and if he thought he was the only one
pulling he wouldn’t even try.”

1. INTRODUCTION

Attention to the very physical aspects of information characterizes the recent
research in quantum computation, quantum cryptography, and quantum commu-
nication. In most of the cases quantum description of the system provides advan-
tages over the classical situation. For example, Simon’s quantum algorithm for
identifying the period of a function chosen by an oracle is more efficient than
any deterministic or probabilistic algorithm (Simon, 1994); Shor’s polynominal
time quantum algorithm for factoring (Shor, 1994) and the quantum protocols for
key distribution devised by Wiener, Bennett and Brassard, and Ekert are qualita-
tively more secure against eavesdropping than any classical cryptographic system
(Bennett and Brassard, 1984; Ekert, 1991).
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Game theory, the study of (rational) decision making in conflict situation,
seems to ask for a quantum version. For example, games against nature (Milnor,
1954) should include those for which nature is quantum mechanical. Does quantum
theory present more subtle ways of playing games? Classical strategies can be
pure or mixed: why cannot they be entangled? Can quantum strategies be more
successful than classical ones? And if the answer is yes, are they of any practical
value? Finally, von Neumann is one of the founders of both modern game theory
(von Neumann and Morgenstern, 1953) and quantum theory, is that a meaningful
coincidence?

2. STAR TREK: THE GAMBLING EPISODE 4

Captain Picard and Q are characters in the popular TV seriesStar Trek: The
Next Generation.Suppose they play thespin-flip game, which is a modern version
of the penny flip game (remember that there should be no coins on a starship).
Picard is to set an electron in the spin-up state, whereupon they will take turns (Q,
then Picard, then Q) flipping the spin or not, without being able to see it. Q wins
if the spin is up when they measure the electron’s state.

This is a two-person zero-sum strategic game, which might be analyzed using
the following payoff matrix:

where the rows and columns are labeled by Picard’s and Q’spure strategies,
respectively;F denotes a flip andN denotes no flip; and the numbers in the matrix
are Picard’s payoffs: 1 indicating a win and−1 a loss. Q’s payoffs can be obtained
by reversing the signs in the above matrix (this is a general feature of azero-sum
game).

Example. Q’s strategy is to flip the spin on his first turn and then not flip it on
his second, while Picard’s strategy is to not flip the spin on his turn. The result is
that the state of the spin is successivelyU , D, D, D, and so Picard wins.

It is natural to define a two-dimensional vector spaceV with basis (U , D) and
to represent player strategies by sequences of 2× 2 matrices. That is, the matrices

F :=
U D

U

D

(
0 1

1 0

)
and N :=

U D
U

D

(
1 0

0 1

)

4Based on a novel by David A. Meyer (Meyer, 1999).
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correspond to flipping and not flipping the spin, respectively, since we define them
to act by left multiplication on the vector representing the state of the spin. A
generalmixed strategyconsists in a linear combination ofF andN, which acts as
a 2× 2 matrix,

U D
U

D

(
1− p p

p 1− p

)

if the player flips the spin with probabilityp ∈ [0, 1]. A sequence of mixed actions
puts the state of the electron into a convex linear combinationaU + (1− a)D, 0≤
a ≤ 1, which means that if the spin is measured the electron will be in the spin-up
state with probabilitya. Q, having studied quantum theory, is utilizing aquantum
strategy, namely a sequence of unitary, rather than stochastic, matrices. In standard
Dirac notation the basis ofV is written (|U 〉, |D〉). A pure quantum state for
the electron is a linear combinationa|U 〉 + b|D〉, a, b ∈ C, aā+ bb̄ = 1, which
means that if the spin is measured, the electron will be in the spin-up state with
probability aā. Since the electron starts in the state|U 〉, this is the state of the
electron if Q’s first action is the unitary operation

U1 = U (a, b) :=
U D

U

D

(
a b

b̄ −ā

)

Captain Picard is utilizing aclassical probabilistic strategyin which he flips
the spin with probabilityp (he has preferred drill to studying quantum theory).
After his action the electron is in a mixed quantum state, i.e., it is in the pure
stateb|U 〉 + a|D〉 with probability p and in the pure statea|U 〉 + a|D〉 with
probability 1− p. Mixed states are conveniently represented asdensity matrices,
elements ofV ⊗ V† with trace 1; the diagonal entry (i,i ) is the probability that
the system is observed to be in the state|i 〉. The density matrix for a pure state
|ψ〉 ∈ V is the projection matrix|ψ〉〈ψ | and the density matrix for a mixed state
is the corresponding convex linear combination of pure density matrices. Unitary
transformations act on density matrices by conjugation: the electron starts in the
pure stateρ0 = |U 〉〈U | and Q’s first action puts it into the pure state

ρ1 = U1ρ0U
†
1 =

(
aā ab̄

bā bb̄

)

Picard’s mixed action acts on this density matrix, not as a stochastic matrix on a
probabilistic state, but as a convex linear combination of unitary (deterministic)
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transformations:

ρ2 = pFρ1F† + (1− p)Nρ1N† =
(

pbb̄+ (1− p)aā pbā+ (1− p)ab̄

pab̄+ (1− p)bā paā+ (1− p)bb̄

)
For p = 1

2, the diagonal elements ofρ2 are equal to1
2. If the game were to end

here, Picard’s strategy would ensure him an expected payoff of 0, independently of
Q’s strategy. In fact, if Q were to employ any strategy for whichaā 6= bb̄, Picard
could obtain an expected payoff of|aā− bb̄| > 0 by settingp = 0, 1 according
to whetherbb̄ 6= aā, or the reverse. Similarly if Picard were to choosep 6= 1

2,
Q could obtain an expected payoff of|2p− 1| by settinga = 1 or b = 1 ac-
cording to whetherp < 1

2, or the reverse. Thus the mixed/quantum equilibria for
the two-move game are pairs ([1

2 F + 1
2 N], [U (a, b)]) for which aā = 1

2 = bb̄
and the outcome is the same as if both players utilize optimal mixed strate-
gies. But Q has another move at his disposal (U3), which again transforms the
state of the electron by conjugation toρ3 = U3ρ2U

†
3 . If Q’s strategy consists of

U1 = U (1/
√

2, 1/
√

2)= U3, his first action puts the electron into a simultaneous
eigenvalue 1 eigenstate of bothF andN, which is therefore invariant under any
mixed strategypF + (1− p)N of Picard; and his second action inverts his first
move to giveρ3 = |U 〉〈U |. That is, with probability 1 the electron spin is up.
Since Q can do no better than to win with probability 1, this is an optimal quantum
strategy for him. All the pairs

([ pF + (1− p)N], [U (1/
√

2, 1/
√

2), U (1/
√

2, 1/
√

2)])

are mixed/quantum equilibria, with value−1 to Picard; this is why he loses every
game. The end.

3. THE MORAL

The practical lesson that the above fable teaches is that quantum theory may
offer strategies that at least in some cases bring advantage over classical strategies.
Therefore game theorists should find answers to the following two questions:

• Under what conditions some players may be able to take the advantage of
quantum tools?
• Are there genuine quantum games that have no classical counterparts or

origin?

It is not easy to give definite answers at the present stage. Nevertheless one can
present some strong arguments for developing quantum theory of games. Modern
technologies are developed mostly because of investigation into the quantum nature
of matter. This means that we sooner or later may wind up in captain Picard’s
position if we are not on alert. Secondly, quantum phenomena probably play
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important role in biological and other complex systems (this point of view is not
commonly accepted) and quantum games may turn out to be an important tool
for the analysis of complex systems. There are also suggestions that quantum-
like description of market phenomena may be more accurate than the classical
(probabilistic) one (Waite, 2002). The second question can be answered only after
a thorough investigation. A lot of cryptographic problems can be reformulated
in game-like setting. Therefore quantum information and quantum cryptography
should provide us with a case in point. It is obvious that some classical games can
be implemented in such a way that the set of possible strategies includes strategies
that certainly deserve the adjective quantum (Duet al., 2002; Pietarinen, 2002).
This process is often referred to as quantization of the respective standard game.
But this is an abuse of language: we are in fact defining a new game.

4. CLASSICAL GAME MAY INVOLVE QUANTUM COMPUTATION

Let us consider a game of the type ofone against all(market). The agent
buys and sells the same commodity in a consecutive way at prices dictated by the
market. Let us suppose that the agent predicts with great probability the changes
in price of the commodity in question. If we denote byhm the logarithm of the
relative prices pm

pm−1
at the quotation timesm= 1, 2,. . . , then the total profit (loss)

of the agent at the momentk is given by the formula

H (n1, . . . , nk) := −
k∑

m=1

hmnm (1)

where the series (nm) takes the value 0 or 1 if the agent possesses money or the
commodity at the momentm, respectively. Of course, the series (nm) defines the
agent’s strategy in a unique way. If we take the transaction costs (e.g. brokerage)
into consideration then the above formula should be replaced by

H (n1, . . . , nk) := −
k∑

m=1

(hmnm − j (nm−1⊕ nm)) (2)

where⊕ denotes the addition modulo 2,n0 := 0, and the constantj is equal
to the logarithm of percent cost of the transaction. An attentive reader certainly
notices that (2) is the Hamiltonian of an Ising chain (Feynmann, 1972) (the shift
by the constant− 1

2 can be absorbed into the value ofhm and therefore changes the
whole formula by an unimportant constant). Classes of portfolios that correspond
to the strategye−βH (n1,...,nk), that is to the canonical distribution, were analyzed
in Piotrowski and Sladkowski (2001a). To determine the profits and correlation
of agent’s behavior we have to know the corresponding statistical sum, that is the
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logarithm of the product of the transfer matrixM(m):

1∑
n1,...,nk=0

M(1)0,n1 M(2)n1,n2 · · ·M(k)nk−1,nk

where

M(m)nm−1,nm := eβ(hmnm− j (nm−1⊕nm))

Unfortunately, the matrixM(m) depends on the parameterm (time) throughhm

and the solution to proper value problem does not lead to a compact form of the
statistical sum. It is possible to find the agent’s best strategy (that is the ground
state of the Hamiltonian) in the limitβ−1→ 0+. Then the transfer matrix algebra
reduces to the (min,+) algebra (Gaubert and Plus, 1997). Let us call apotential
ground stateof the Ising chain for a finite series (h1, . . . , hk) a strategy that, if
supplemented with elements corresponding to following moments (k′ > k), can
turn out to be the actual ground state of the HamiltonianH (n1, . . . , nk, . . . , nk′ ).
These states are of the form

(0, 1, 1, 0, 1, 0, 0,nk−l+1, nk−l+2, . . . , nk)

and consist of two parts. The first one is determined by the series (h1, . . . , hk) and
the second of lengthl , (nk−l+2, . . . , nk), that can be called the coherence depth (cf.
the many world interpretation of quantum theory). The later can be determined
only if we know hm for m > k. Any potential ground state forms an optimal
strategy for the agent that knows only the data up to the momentk. In this case
when the transaction cost are nonzero we “discover” an obvious arbitrage risk, that
for example may result from the finite maturity time of the contracts. Although
the above model is classical it intrisically connected with quantum computation
(and games) because all calculations for an arbitrage with nonzero transaction
cost should take account of all potential ground states, number of which grows
exponentially with the coherence depth. Therefore only quantum computation
exploring, for example, quantum states (strategies) of the form

|ψ〉 :=
1∑

n1···nk=0

cn1···nk |n1〉 · · · |nk〉

gives hope for an effective practical implementation of the strategy. This is an
interesting area for further research.

5. QUANTUM GAME THEORY

Any quantum system which can be manipulated by two parties or more and
where the utility of the moves can be reasonably quantified, may be conceived
as a quantum game. Atwo-player quantum game0 = (H, ρ , SA, SB, PA, PB) is
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completely specified by the underlying Hilbert spaceH of the physical system, the
initial stateρ ∈ S(H), whereS(H) is the associated state space, the setsSA and
SB of permissible quantum operations of the two players, and the payoff (utility)
functionsPA andPB, which specify the payoff for each player.

A quantum strategy sA ∈ SA, sB ∈ SB is a quantum operation, that is, a com-
pletely positive trace-preserving map mapping the state space on itself. The quan-
tum game’s definition may also include certain additional rules, such as the order
of the implementation of the respective quantum strategies. We also exclude the
alteration of the payoff during the game. The generalization for the N players case
is obvious.

Schematically we have

ρ 7−→ (sA, sB) 7−→ σ =⇒ (PA, PB)

The following concepts will be used in the remainder of this lecture. These
definitions are fully analogous to the corresponding definitions in standard game
theory (Osborne, 1994; Straffin, 1993). A quantum strategysA is calleddominant
strategyof Alice if

PA(sA, s′B) ≥ PA(s′A, s′B) (3)

for all s′A ∈ SA, s′B ∈ SB. Analogously we can define a dominant strategy for Bob.
A pair (sA, sB) is said to be anequilibrium in dominant strategiesif sA andsB are
the players’ respective dominant strategies. A combination of strategies (sA, sB) is
called aNash equilibriumif

PA(sA, sB) ≥ PA(s′A, sB) (4)

PB(sA, sB) ≥ PB(sA, s′B) (5)

A pair of strategies (SA, SB) is calledPareto optimal, if it is not possible to increase
one player’s payoff without lessening the payoff of the other player. A solution in
dominant strategies is the strongest solution concept for a non-zero-sum game. In
the Prisoner’s Dilemma (Osborne, 1994; Straffin, 1993)

Bob : C Bob : D

Alice: C (3, 3) (0, 5)
Alice: D (5, 0) (1, 1)

the numbers in parentheses represent the row (Alice) and column (Bob) player’s
payoffs, respectively. Defection is the dominant strategy, as it is favorable regard-
less what strategy the other party chooses.
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In general the optimal strategy depends on the strategy chosen by the other
party. A Nash equilibrium implies that neither player has a motivation to unilater-
ally alter his/her strategy from this equilibrium solution, as this action will lessen
his/her payoff. Given that the other player will stick to the strategy correspond-
ing to the equilibrium, the best result is achieved by also playing the equilibrium
solution. The concept of Nash equilibria is therefore of paramount importance to
studies of non-zero-sum games. It is, however, only an acceptable solution concept
if the Nash equilibrium is not unique. For games with multiple equilibria we have
to find a way to eliminate all but one of the Nash equilibria. A Nash equilibrium
is not necessarily efficient. We say that an equilibrium is Pareto optimal if there is
no other outcome which would make both players better off.

Up to now several dozens of papers on quantum games have been published.
We would like to mention the following important problems and proposals:

• The prescription for quantization of games provided by Eisert and cowork-
ers (Eisertet al., 1999) is a general one that can be applied to any 2× 2
game, with the generalization to 2× n games. (SU(n) operators are used
to represent the players’ actions.)
• Quantum theory of information is certainly a serious challenge to the

standard game theory (e.g., quantum eavesdropping, quantum coin
tossing).
• Evolutionary stable strategies (Osborne, 1994; Straffin, 1993) have been

used to explaining various phenomena. Iqball and Toor (2001) have ana-
lyzed several important issues that hint that some biological systems may
in fact behave in quantum-like way.
• Quantum game theory may help solving some philosophical paradoxes,

cf. the quantum solution to the Newcomb’s paradox (free will dilemma)
(Piotrowski and Sladkowski, 2002a).
• The Monty Hall Problem (Gilman, 1992) is an interesting game based on

a popular TV quiz. In this case the analysis shows that quantization of a
classical game may be nonunique (Flitney and Abbott, 2002; D’Ariano
et al., 2002).
• In the classical Battle of Sexes Game (Osborne, 1994; Straffin, 1993) there

is no satisfactory resolution. In the quantum version the deadlock may
be broken (Duet al., 2001). Unfortunately we see no way of using it to
solve marriage problems. The analysis shows that quantization not always
have direct analogies with the backgrouud classical problem.
• There are games in which the agents’ strategies do not have adequate

descriptions in terms of some Boolean algebra of logic and theory of prob-
ability. They can be analyzed according to the rules of quantum theory and
the results are promising, see, e.g., the Wise Alice game proposed in Grib
and Parfionov (2002a,b). Note that this game is a simplified version of the
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Quantum Barganing Game (Piotrowski and Sladkowski, 2002b) restricted
to the “quantum board” of the form [buy, sell]× [bid, accept].
• Proposals for using quantum games in market and stock exchange descrip-

tion (quantum market games) have already been put forward (Piotrowski
and Sladkowski, 2001b, 2002b,c, in press). They seem to be very promis-
ing. At present stage, quantum auction presents a feasible idea if we neglect
costs of implementation.
• Parrondo’s Paradox (Harmer and Abbott, 1999) consists in asymmetrical

combination of doomed games (strategies) so that the resulting new game
is not biased or there even is a winning strategy. It can be used to increase
reliability and stability of electrical circuits and so on. Quantum Parrondo
Games are also interesting (Flitneyet al., 2002) and would probably find
interesting applications.
• Quantum gambling: At the present stage of development it already is fea-

sible to open “quantum casinos” (Goldenberget al., 1999; Hwanget al.,
2001). Quantum gambling is closely related to quantum logic and can be
used to define a Bayesian theory of quantum probability (Pitowsky, 2002).
• To our knowledge, algorithmic combinatorial games, except for cellular

automata, have been completely ignored by quantum physicists. This is
astonishing because at least some of the important intractable problems
might be attacked and solved on a quantum computer (even such a simple
one player game as Minesweeper in NP-complete).

Much more can be find at, e.g., the Los Alamos preprint database.

6. SUMMARY AND OUTLOOK

We have given examples of interesting possibilities offered by quantum strate-
gies. In general, quantum extension of a standard (classical) game is not unique.
Most of the published analyses explore completely positive trace-preserving maps
as admissible quantum operations (tactics or strategies). This restriction is con-
ventional but not necessary. The effect noise and decoberence and the use of
ancillas and algorithmic aspects in quantum games are the most important ar-
eas that invite further research. Quantum game theory should turn out to be an
important theoretical tool for investigation of various problems in quantum cryp-
tography and computation, economics, or game theory even if never implemented
in real world. Let us quote the Editor’s Note toComplexity Digest(2001, 27(4);
http://www.comdig.org):

It might be that while observing the due ceremonial of everyday market transaction
we are in fact observing capital flows resulting from quantum games eluding classical
description. If human decisions can be traced to microscopic quantum events one would
expect that nature would have taken advantage of quantum computation in evolving



P1: FLT

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468241 August 19, 2003 12:16 Style file version May 30th, 2002

1098 Piotrowski and SlÃadkowski

complex brains. In that sense one could indeed say that quantum computers are playing
their market games according to quantum rules.

REFERENCES

Bennett, C. H. and Brassard, G. (1984). Quantum cryptography: Public-key distribution and coin
tossing. InProceedings of the IEEE International Conference on Computers, Systems and Signal
Processing, Bangalore, India, December 1984, IEEE, New York, p. 175.

D’Ariano, G. M.et al.(2002). The quantum Monty Hall problem.Quantum Information and Computing
2, 355.

Du, J.et al. (2001). Remarks on quantum battle of sexes game.Preprintquant-ph/0103004.
Du, J. et al. (2002). Experimental realization of quantum games on a quantum computerPhysical

Review Letters88, 137902.
Eisert, J., Wilkens, M., and Lewenstein, M. (1999). Quantum games and quantum strategies.Physical

Review Letters83, 3077.
Ekert, A. (1991). Quantum cryptography based on Bell’s theorem.Physical Review Letters67, 661.
Feynmann, R. P. (1972).Statistical Physics. A Set of Lectures, Benjamin Inc., Menlo Park.
Flitney, A. P. and Abbott, D. (2002). Quantum version of the Monty Hall problem.Physical Review A

65, 062318.
Flitney, A. P., Ng, J., and Abbott, D. (2002). Quantum Parrondo’s games.Physica A314, 384.
Gaubert, S. and Plus, M. (1997). Methods and applications of max-plus linear algebra. InLecture Notes

in Computer Sciences, Vol. 1200, Springer, New York.
Gillman, L. (1992). The car and the goats.American Mathematical Monthly99, 3.
Goldenberg, L., Vaidman, L., and Wiesner, S. (1999). Quantum gambling.Physical Review Letters82,

3356.
Grib, A. and Parfionov, G. (2002a). Can the game be quantum?Preprintquant-ph/0206178.
Grib, A. and Parfionov, G. (2002b). Macroscopic quantum game.Preprintquant-ph/0211068.
Harmer, G. P. and Abbott, D. (1999). Parrondo’s paradox.Statistical Science14, 206.
Hwang, W. Y., Ahn, D., and Hwang, S. W. (2001). Quantum gambling using two nonorthogonal states.

Physical Review A64, 064302.
Iqbal, A. and Toor, A. H. (2001). Evolutionary stable strategies in quantum games.Physics Letters A

280, 249.
Meyer, D. (1999). Quantum strategies.Physical Review Letters82, 1052.
Milnor, J. (1954). Games against nature. InDecision Processes, R. M. Thrall, C. H. Coombs, and R.

L. Davis, eds., Wiley, New York, p. 49.
Osborne, M. J. (1994).A Course in Game Theory, MIT Press, Boston.
Pietarinen, A. (2002). Quantum logic and quantum theory in a game-theoretic perspective.Open

Systems and Information Dynamics9, 273.
Piotrowski, E. W. and Sladkowski, J. (2001a). The thermodynamics of portfolios.Acta Physica Polonica

B 32, 597.
Piotrowski, E. W. and Sladkowski, J. (2001b). Quantum-like approach to financial risk: Quantum

anthropic principle.Acta Physica Polonica B32, 3873.
Piotrowski, E. W. and Sladkowski, J. (2002a). Quantum solution to the Newcomb’s paradox.Preprint

quant-ph/0202074.
Piotrowski, E. W. and SlÃadkowski, J. (2002b). Quantum bargaining games.Physica A308, 391.
Piotrowski, E. W. and SlÃadkowski, J. (2002c). Quantum market games.Physica A312, 208.
Piotrowski, E. W. and SlÃadkowski, J. (in press). Quantum English auctions.Physica A.
Pitowsky, I. (2002). Betting on the outcomes of measurements: A Bayesian theory of quantum proba-

bility. Preprint quant-ph/0208121.



P1: FLT

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468241 August 19, 2003 12:16 Style file version May 30th, 2002

An Invitation to Quantum Game Theory 1099

Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. InPro-
ceedings of the 35th Symposium on Foundations of Computer Science, Santa Fe, S. Goldwasser,
ed., IEEE Computer Society Press, Los Alamitos, p. 124.

Simon, D. R. (1994). On the power of quantum computation. InProceedings of the 35th Symposium on
Foundations of Computer Science, Santa Fe, S. Goldwasser, ed., IEEE Computer Society Press,
Los Alamitos, p. 116.

Straffin, P. D. (1993).Game Theory and Strategy. AMS, Rhode Island.
Vandersypen, L. M. K., Steffen, M., Breyta, G., Yannoni, C. S., and Chuang, I. L. (2001). Experimental

realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance.Nature414,
883.

von Neumann, J. and Morgenstern, O. (1953).Theory of Games and Economic Behavior, Princeton
University Press, Princeton.

Waite, S. (2002).Quantum Investing, Texere Publishing, London.


